Neurotechnology

Neurotechnology

Posted by Safe In4 Hub

Alternative forms of plasticity-based training




Merzenich’s own current research focuses not on developing neural prosthetics, but rather on developing intensive plasticity-based mental and physical training programs. His targets are schizophrenia, bipolar disorder, functional losses in normal aging, mild cognitive impairment, Alzheimer’s disease, acquired movement disorders, autism, and learning, language and reading impairments in children.

“We are trying to see how far we can drive the brain in corrective directions by intensive training without a device,” he says.

In these cases, the neural circuits at play are those that receive sensory inputs - smell, touch, taste, sound and sight - support memory and cognition, and orchestrate behaviors.

Merzenich’s ongoing studies involving the use of software to accelerate the speed at which children with language and learning disabilities process sound suggest he’s on track. (His patented findings led to his founding in 1996, with Paula Tallal of Rutgers University, Scientific Learning, a therapeutic software company in Oakland, California.)

And numerous clinical trials targeting the other neurological conditions are producing encouraging results. A clinical trial for schizophrenia, underway at UCSF and Yale, aims to drive misdirected neural circuitry in a normal direction, though cognitive therapy, perceptual training, movement control, response control.

The results of this trial (supported by a second therapeutic software company that he has co-founded, Posit Science, in San Francisco) are “outstanding,” he says, far better than those produced by the standard medication for the disease, but at this early stage in the development of the strategy the regimen requires a burdensome 100 hours of work.

Other clinical trials under way at UCSF involve normal and infirm aging populations, including mild cognitive impairment and Alzheimer’s patients.

The studies on autism are the least developed, he says. “We’ve trained thousands of autistics with our child training programs, but our training tools and their effective applications are still very limited. We know that we can provide much better help for these individuals.”

Merzenich is not currently collaborating with neural stem cell scientists, but he talks with them, and thinks about their work. With the establishment of new neurons in the brain, he says, “brain plasticity will have to be a substantial and necessary part of recovery.”

“These are interesting stories,” he reflects. “They do not involve trying to substitute, compensate or work around a problem. In each case, the work involves trying to correct the processing in the machinery with the machinery being substantially intact.”

UCSF is a leading university that advances health worldwide by conducting advanced biomedical research, educating graduate students in the life sciences and health professions, and providing complex patient care.


Copyright (C) 2017 by safein4.com

Donah Shine

Head Master

Address: 5636 Lemon Ave.
Dallas TX 75209

Phone: +1 214 5203694

E-Mail: admin@safein4.com